A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data

نویسندگان

  • Markus Metz
  • Veronica Andreo
  • Markus Neteler
چکیده

Temperature time series with high spatial and temporal resolutions are important for several applications. The new MODIS Land Surface Temperature (LST) collection 6 provides numerous improvements compared to collection 5. However, being remotely sensed data in the thermal range, LST shows gaps in cloud-covered areas. We present a novel method to fully reconstruct MODIS daily LST products for central Europe at 1 km resolution and globally, at 3 arc-min. We combined temporal and spatial interpolation, using emissivity and elevation as covariates for the spatial interpolation. The reconstructed MODIS LST for central Europe was calibrated to air temperature data through linear models that yielded R2 values around 0.8 and RMSE of 0.5 K. This new method proves to scale well for both local and global reconstruction. We show examples for the identification of extreme events to demonstrate the ability of these new LST products to capture and represent spatial and temporal details. A time series of global monthly average, minimum and maximum LST data and long-term averages is freely available for download.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of MODIS LST Compared with WRF Model and in situ Data over the Waimakariri River Basin, Canterbury, New Zealand

In this study we examine the relationship between remotely sensed, in situ and modelled land surface temperature (LST) over a heterogeneous land-cover (LC) enclosed in alpine terrain. This relationship can help to understand to what extent the remotely sensed data can be used to improve model simulations of land surface parameters such as LST in mountainous areas. LST from the MODerate resoluti...

متن کامل

Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data

Continuous monitoring of extreme environments, such as the European Alps, is hampered by the sparse and/or irregular distribution of meteorological stations, the difficulties in performing ground surveys and the complexity of interpolating existing station data. Remotely sensed Land Surface Temperature (LST) is therefore of major interest for a variety of environmental and ecological applicatio...

متن کامل

New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products

This paper discusses the lessons learned from analysis of the Moderate Resolution Imaging Spectroradiometer (MODIS) Land-Surface Temperature/Emissivity (LST) products in the current (V4) and previous versions, and presents eight new refinements for V5 product generation executive code (PGE16) and the test results with real Terra and Aqua MODIS data. The major refinements include considering sur...

متن کامل

Annual Seasonality Extraction Using the Cubic Spline Function and Decadal Trend in Temporal Daytime MODIS LST Data

Examining climate-related satellite data that strongly relate to seasonal phenomena requires appropriate methods for detecting the seasonality to accommodate different temporal resolutions, high signal variability and consecutive missing values in the data series. Detection of satellite-based Land Surface Temperature (LST) seasonality is essential and challenging due to missing data and noise i...

متن کامل

Development a split window algorithm to estimate land surface temperature from Sentinel -3 satellite data

Land Surface Temperature (LST) is an important indicator of the study of energy balance models at the earthchr('39')s surface and the interactions between the Earth and the atmosphere on a regional and global scale. To date, different algorithms have been developed in the last few decades to determine the land surface temperature using various satellite images. In this study, a new split window...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017